domingo, 15 de mayo de 2011

3.12 Funcion Delta Dirac

Delta de Dirac es una “función generalizada” que viene definida por la siguiente fórmula integral:
\int_{-\infty}^\infty \delta(x-a) f(x) \, dx = f(a) \qquad \left[e.g. \int_{-\infty}^\infty \delta(x) \, dx = 1 \right ]
La Delta de Dirac no es una función estrictamente hablando puesto que se puede ver que requeriría tomar valores infinitos, a veces informalmente se define la delta de Dirac como el límite de una sucesión de funciones, que tienda a cero en todo punto del espacio excepto en un punto para el cual divergería hacia infinito de ahí la “definición convencional” dada por:
\delta(x) = \begin{cases} \infty, & x = 0 \\ 0, & x \ne 0 \end{cases} ;
Comúnmente en física la Delta de Dirac se usa como una distribución de probabilidad idealizada, técnicamente de hecho es una distribución (en el sentido de Schwartz).
En términos del análisis dimensional, esta definición de δ(x) implica que δ(x) posee dimensiones recíprocas a dx.


3.11 Trasformada De Laplace Funcion Periodica

La Transformada de Laplace es una técnica Matemática que forma parte de ciertas transformadas integrales como la transformada de Fourier, la transformada de Hilbert, y la transformada de Mellin entre otras. Estas transformadas están definidas por medio de una integral impropia y cambian una función en una variable de entrada en otra función en otra variable. La transformada de Laplace puede ser usada para resolver Ecuaciones Diferenciales Lineales y Ecuaciones Integrales. Aunque se pueden resolver algún tipo de ED con coeficientes variables, en general se aplica a problemas con coeficientes constantes. Un requisito adicional es el conocimiento de las condiciones iniciales a la misma ED. Su mayor ventaja sale a relucir cuando la función en la variable independiente que aparece en la ED es una función seccionada.
Cuando se resuelven ED usando la técnica de la transformada, se cambia una ecuación diferencial en un problema algebraico. La metodología consiste en aplicar la transformada a la ED y posteriormente usar las propiedades de la transformada. El problema de ahora consiste en encontrar una función en la variable independiente tenga una cierta expresión como transformada.